K18P 0054

Reg.	No.	
Mam		

Fifth Semester M.C.A. Degree (Regular/Supplementary/Improvement)

Examination, January 2018

(2014 Admission Onwards)

Elective - III : MCA5E09 : OPERATIONS RESEARCH

Time: 3 Hours

Max. Marks: 80

Instructions: Answer any ten questions from Part – A. Each question carries 3 marks. Answer all questions from Part – B. Each question carries 10 marks.

PART-A

Answer any ten questions. Each question carries 3 marks.

- 1. What is linear programming? Explain briefly the dual of a LPP.
- Define artificial variable. What are the methods used to solve an LPP involving artificial variables?
- 3. When does degeneracy happen in transportation problem?
- 4. What is an unbalanced assignment problem? Give example.
- How does a Travelling Salesman Problem differ from a routine assignment model?
- 6. List the applications of Dynamic programming problem.
- 7. Explain, briefly branch and bound method.
- 8. What is a sequencing problem? Give example.

- 9. What is an event? How will you represent an event in a network diagram?
- 10. Explain the basic difference between PERT and CPM.
- 11. List the main characteristics of a queuing system.
- 12. Write the classification of stochastic process.

PART-B

Answer all questions. Each question carries 10 marks.

13. a) A company produces two different products, A and B and makes a profit of ₹ 40 and ₹ 30 per unit respectively. The production process has a capacity of 30000 man-hours. It takes 3 hours to produce one unit of A and one hour to produce one unit of B. The market survey indicates that the maximum number of units of product A that can be sold is 8000 and those of B is 12000. Formulate the problem and solve it by graphical method.

OR

b) Use simplex method to solve the LPP

Min.
$$Z = x_2 - 3x_3 + 2x_5$$

Subject to $3x_2 - x_3 + 2x_5 \le 7$
 $-2x_2 + 4x_3 \le 12$
 $-4x_2 + 3x_3 + 8x_5 \le 10$
 $x_2, x_3, x_5 \ge 0$

14. a) Write down the dual of the following LPP and solve it

Max.
$$Z = 4x_1 + 2x_2$$

Subject to $x_1 + x_2 \ge 3$
 $x_1 - x_2 \ge 2$
 $x_1, x_2 \ge 0$
OR

b) i) Mention the applications of LPP.

4

 Find the initial basic feasible solution for the following transportation problem by VAM.

6

		Destination					
Origin O ₂	D ₁	D ₂	D ₃	D ₄	Supply		
	0,	11	13	17	14	250	
	02	16	18	14	10	300	
	03	21	24	13	10	400	
	Demand	200	225	275	250	950	

15. a) Use Branch-and-Bound techniques to solve the following IPP

Max.
$$Z = 7x_1 + 9x_2$$

Subject to
$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

$$0 \leq x_1, x_2 \leq 7$$

and x_1 , x_2 are integers.

OF

b) Solve the IPP by cutting plane method.

Max.
$$Z = 7x_1 + 9x_2$$

Subject to
$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

$$x_1 \ge 0, x_2 \ge 0$$
 and integers.

16. a) i) Write a short note on sequencing problem.

4

 ii) A small maintenance project consist of the following jobs, whose precedence relationships are given below:

Job	1-2	1-3	2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
Duration					-70	12	1	14		14

- a) Draw an arrow diagram representing the project.
- b) Find the total float for each activity.
- c) Find the critical path and the total project duration.

b) Four jobs 1, 2, 3 and 4 are to be processed on each of the fire machines A, B, C, D and E in the order ABCDE. Find the total minimum elapsed time if no passing of jobs is permitted. Also find the idle time for each machine.

	Jobs					
Machines	1	2	3	4		
Α	7	6	5	8		
В	5	6	4	3		
С	2	4	5	3		
D	3	5	6	2		
E	9	10	8	6		

17. a) Explain with suitable examples the classification states of Markov Chain.

OR

b) Write short notes on classification of queuing model and the basic structure of queuing model.